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Abstract: Let X (Q,T) denote the space of geodesic triangulations of 2 with combinatorial
type T, where T is a triangulation of a convex polygon © embedded in R?, and let W (2, T')
be the weight space of (€2, 7). Using a framework established by Luo which gives a relation
between Tutte’s Embedding Theorem and X (£2,7"), we prove several new results regarding
the motion and limiting behavior of a geodesic triangulation 7 € X (2, 7"), which is the image
of a weight w € W(,T) under the Tutte map ¥ : W(Q,T) — X(Q,T), as we map 7 to
another geodesic triangulation of €2 by varying an interior-to-boundary edge weight within
w.

Using these aforementioned results, we then give a possible approach toward studying the
homotopy type of X (€2, T), where (2 is strictly star-shaped with one reflex vertex and 7' is a
triangulation of €2 which contains no dividing edges.
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CHAPTER I

INTRODUCTION

1.1 Introduction

One of the earliest results concerning the space of geodesic triangulations of a polygon
embedded in the plane was established in the 1940s by Cairns [6], who proved that this
space is path-connected if the polygon is a triangle. Several more results regarding the
theory of geodesic triangulations were then proven in the following years, such as [2] and
[10]; in particular, in the 1980s Bloch et al. [3] both strengthened and generalized Cairns’
result above by showing that this space is contractible if the polygon is convex.

We are interested in studying the homotopy type of this space for a similar family of
polygons, namely those which are strictly star-shaped. Luo showed in 2022 that this space
is indeed contractible in the case of a strictly star-shaped quadrilateral [11]. However, one
problem which currently remains open is the general case, specifically whether the space
of geodesic triangulations of an arbitrary strictly star-shaped polygon with a triangulation
containing no dividing edges is contractible.

The primary result of this thesis is as follows: Using a framework given in [12] — which
connects geodesic triangulations to Tutte’s Embedding Theorem — as our starting point, we
construct a map which sends a geodesic triangulation 7 of a convex polygon €2 to a similar
geodesic triangulation of €2, albeit with a new combinatorial type containing one less interior
vertex. Moreover, we establish several new results regarding the behavior of 7 under this
mapping. Utilizing these results, we then give a possible approach toward settling the open

problem above.



1.2 Preliminary Definitions

We begin by recalling several geometric definitions.

Definition 1.2.1 Consider a map ¢ : Vg — R% where Vg = {vi,...,Uny, UNgt1 = U1},
such that for every 1 < ¢ < Np, each consecutive pair ¢(v;) and ¢(viy1) is connected by a
line segment and the union of these segments form a simple closed curve in R?. The closure
Q of the component bounded by this simple closed curve is a polygon ) embedded in R?,
where Vi is the set of boundary vertices of §2 and the aforementioned line segments are

its boundary edges.

Henceforth, unless stated otherwise € will denote a polygon which is embedded in R2.

Furthermore, note that €2 is a topologically closed disk.
Definition 1.2.2 A (simple) graph is a tuple G = (V, E) which consists of
e a set of vertices V = {vy,..., vk}, and

e a set of edges E, where an edge is defined to be an unordered pair of distinct vertices

{vi,v;}, with 1 <4,j < K.

From the above definition, a graph is a set-theoretic object, but we can regard it as a
topological space constructed by gluing edges, identified as closed intervals in R, along their

vertices.
Definition 1.2.3 A graph G is planar if it can be embedded in R?.

Definition 1.2.4 A planar graph G partitions R? into path-connected open sets, called the

faces [ of G, with precisely one unbounded face.

Definition 1.2.5 A triangulation of 2 is a triple T = (V, E, F') which consists of a set

of vertices V.= Vg UV}, a set of edges E, and a set of faces F' such that

e the one-skeleton TW of T, determined by V and E as a graph, is embedded in Q0 and



e the boundary of each bounded face of T is a triangle.

In terms of notation, we let the tuple (2,7) denote a polygon 2 with triangulation T.
Moreover, in the above definition V; denotes the set of interior vertices of (€2,7") and

N[ = |‘/[|

Definition 1.2.6 Using the above notation, an edge in E is strictly interior if it con-
nects two interior vertices and interior-to-boundary if it connects an interior vertex to a

boundary vertex; in both cases, they are interior edges of (2,T).
We now arrive at the most important definition in this thesis:

Definition 1.2.7 Let (2, T) denote a triangulated polygon which is given by ¢. A geodesic
triangulation of Q with combinatorial type T is an embedding T : T — R? of the
1-skeleton of T' into R? such that T equals ¢ on Vg and maps every edge e € E to a line
segment parametrized by unit speed. Let X (2, T) denote the space of geodesic triangulations

of 0 with combinatorial type T .

In particular, we say that 7 in Definition 1.2.7 is a straight-line embedding of (€2, 7T)

which fixes the boundary polygon €.

Figure 1: Only the two left-most diagrams are geodesic triangulations of a 4-gon €2 with a

fixed combinatorial type T

To gain a more formal understanding of X (€2,7), we first remark that because every
geodesic triangulation 7 € X (€, T) is uniquely determined by the coordinates of its interior

vertices in R?, then



Remark 1.2.1 X(Q,7T) is a 2N;-dimensional manifold and is endowed with the Euclidean

subspace topology from RN
We now state a special family of triangulated polygons:
Definition 1.2.8 Given a polygon (1,

e An eye of Q) is a point e € § such that for any other point p € ), the line segment

connecting e to p is a subset of §2;
e () is strictly star-shaped if it contains an eye, but not every point of ) is an eye.

Observe that if ) is strictly star-shaped, then it contains a boundary vertex v, with an

interior angle greater than 7. We refer to v, as a reflex vertex.

Definition 1.2.9 For an arbitrary triangulated polygon (2, T), a dividing edge of <) is

an interior edge of T which connects two boundary vertices.

1.3 Historical Background

Regarding the study of geodesic triangulations for an arbitrary polygon 2 with triangulation

T, one of the first results came in the 1940s when Cairns showed that

Theorem 1.3.1 (Cairns [6]) For any triangulation T, X (Q,T') is path-connected if Q is a

triangle.

To that end, several years later Ho [10] improved Cairns’ result above by showing that,
with the same ) as in Theorem 1.3.1, X (€, T) is simply-connected. Bloch et al. then

strengthened this by proving
Theorem 1.3.2 (Bloch et al. [3]) If Q is convez, then X (Q,T) ~ R?M.

Corollary 1.3.1 With the hypothesis in the preceding Theorem, X (2, T') is contractible.



According to [3], one consequence of the above Corollary is the following classical result

from topology due to Smale:

Theorem 1.3.3 (Smale [14]) The space Diff(D?) of diffeomorphisms of the 2-disk which

fixes the boundary point-wise is contractible.

Comparing an element of Diff(D?) with those in Figure 2, we sometimes refer to the space
of geodesic triangulations X (2, T') of a polygon  as a discretized approximation of Diff(D?),
the reason being that, informally speaking, as we keep triangulating €2, thus increasing the
number of interior vertices in the process, the embeddings will act on a larger and larger

number of interior points, akin to the elements in Diff(D?).

m @
@ m
Figure 2: Two elements of X (€, 7).

Restricting our attention to the case of star-shaped polygons, in 1978 Bing and Starbird

proved that

Theorem 1.3.4 (Bing and Starbird [2]) If) is strictly star-shaped and T has no dividing

edges, then X (2, T) is both non-empty and path-connected.

In fact, the example shown in Figure 3, which is a variant of the one constructed in

2], shows the importance of the strictly star-shaped hypothesis on € in order for the path-



Figure 3: A triangulated non-star-shaped 9-gon (2, 7") with 7o X (2,7 # 0.

connected conclusion to hold: In this case, () is a non-star-shaped nine-gon with a triangula-
tion T specifying 3 interior vertices, v{, v, and v{, which are pictured in yellow, purple, and
blue, respectively. The embeddings 71 and 75 of (£2,7) on the left and right, respectively,
are both elements of X (2, T). However, in order to isotope v! in 7 to its position in 7o,
the interior edge e} (which is depicted in red) connecting the two vertices v and vi must
eventually be horizontal as in the middle diagram to avoid colliding with an interior edge
of v{; but at the instant when this occurs, we obtain a degeneracy with some of the edges

connected to vl

Furthermore, using non-star-shaped polygons, it was shown in 2022 that

Theorem 1.3.5 (Luo [12]) For every n > 0, there exists a triangulated polygon (2,T)
such that 7, X (2, T) # 0.

1.4 Problem Statement

In light of the results by Bing-Starbird and Luo above, the overarching conjecture of our

thesis is as follows:

Conjecture 1.4.1 If (2,T) is a triangulated star-shaped polygon with one reflex vertex and

no dividing edges, then X (2, T) is contractible.



1.5 Outline

In Chapter II, we recall a framework introduced by Luo in [12] which related an analogue
of Tutte’s Embedding Theorem to the study of geodesic triangulations in that it resulted in
a new proof of Corollary 1.3.1; in particular, we review the definition of the weight space
W(Q,T) of (2,T) as well as the construction of the Tutte map ¥ : W(Q,T) — X(Q,T).
Chapter III formalizes a proof sketch given in [11] which addresses a special case of Conjecture
1.4.1, namely when € is a strictly star-shaped quadrilateral. In Chapter IV, we then prove
several new results pertaining to the behavior of any 7 € X(Q,T'), where Q is an arbitrary
convex polygon with triangulation 7', when we increase an interior-to-boundary edge weight
within a weight w € W(£,T) which is related to 7 via 7 = ¥(w). Finally, in Chapter V we
give a possible approach toward proving Conjecture 1.4.1 by applying several results from

the previous Chapter.



CHAPTER I1

TUTTE’S EMBEDDING THEOREM

Let (£2,T) denote a convex polygon 2 with triangulation 7'. In [12], Luo gave a connection
between Tutte’s Embedding Theorem [15], which is a classical result from graph theory
that gives a method for straight-line embedding certain planar graphs into R? in a particular
manner, to the space X (€2, T'). In particular, he used this link to give a new proof of Corollary
1.3.1, which states that X (§2,T") is contractible.

In this chapter, we will review Tutte’s theorem, an analogue of this theorem due to
Floater [8], as well as the proof mentioned above, and several concepts from this Chapter

will be used in Chapter IV.

2.1 Statement of Tutte’s Theorem

Before stating this Theorem, we first review several definitions from graph theory.

Definition 2.1.1 Given a graph G = (V, E) and two distinct vertices vi,vy € V', a path
from vy to vy is a sequence of edges which joins vy to vy. If such a path exists, then vy is

connected to vy. In addition, G is connected if every pair of distinct vertices is connected.

Definition 2.1.2 A graph G is k-vertex-connected if, after the deletion of any set A =
{viy, viy, ..., 05, } of fewer than k vertices in G, along with all of the edges (v;,v;) for which

v; € A orv; € A, the graph remains connected.

Theorem 2.1.1 (Tutte [15]) Given a 3-vertex-connected planar (simple) graph G such
that its outer face is a convex polygon, there is a straight-line embedding of G into R? such

that each interior vertex of G is in the barycenter of its neighbors.



In 2003, Floater [8] gave a reformulation of Theorem 2.1.1 in the case of a triangulated
2-disk, which is more relevant to our work as we are concerned with triangulated polygons.
The following algorithm, which is referred to in [12] as Tutte’s Method, is used to produce

a geodesic triangulation of (Q, 7).

(1) Assign every interior directed edge e;; of (2, T) a scalar w;; > 0, which we refer to as

the edge weight of e;; (we need not require w;; = wj;);
(2) Fix the coordinates of each boundary vertex v? € Vg of ;

(3) Solve the Tutte system of equations below, which consists of 2N; equations, for
the coordinates of the interior vertices v} € Vr:
> wiivf —v;) =0,
vl
2 J
where v; € R? ranges over all boundary and interior vertices of (2,7) and where

vl ~ v; means that v} is adjacent to v;. This solution exists and is unique;

(4) Place each interior vertex v} in the plane according to the coordinates obtained in Step

(3) and connect the vertices with line segments specifed by 7. This yields an element

of X(,T).



2.2 Application to the Case of a Convex Polygon

In this section, we restate the proof of Corollary 1.3.1 given in [12] as well as the preceding

concepts. As before, 2 will denote a convex polygon.

Definition 2.2.1 An N; x |V| matriz (w;;) of edge weights w;; is a weight of (2, T) if
o w;; =0 if v; b vy;
o w;; >0 if v; ~vj.
Let W (€2, T) denote the space of weights of (€2, T), which we call its weight space.

Definition 2.2.2 The Tutte map V : W(Q,T) — X(Q,T) is defined by sending a weight
(wy;) to the (unique) geodesic triangulation specified by solving the Tutte system of equations

with the edge weights of (w;;) as coefficients.
To give a topological grounding of the space defined above, we have
that /<§f\
. aj bf.
Remark 2.2.1 W(Q,T) is a convex subset of the vector space Mg(Ny X i|Y%

V.

The following map, which is due to Floater, gives a method for moving

from the space of weights to the space of geodesic triangulations: ovfj

Definition 2.2.3 (Floater [7]) Let 7 € X(Q,T). For every directed Figure 4: The

interior edge e;; of T, define Mean Value Co-
tan (a{/?) + tan (b{/Q) ordinates.
Ci; = s
’ [lvi = v
where || - || denotes the Buclidean norm in R? and a,b! are depicted in Figure 4.

The Mean Value Coordinates of each e;j is defined as

Dt Gk



The following map gives us a section of W:

Definition 2.2.4 The Floater map o : X(Q,T) — W(Q,T) sends a geodesic triangulation

to a weight specified by the Mean Value Coordinates.
One important observation regarding o is that it is continuous.
Lemma 2.2.1 The Tutte map ¥ s both continuous and surjective.

Proof. (Luo [12]) The function ¥ is continuous due to the continuous dependence of the so-
lution of the Tutte system of equations on the coefficients of the system, whereas surjectivity

follows from the fact that the Floater map o is a section of V. [ |
We now state the proof of Corollary 1.3.1 given in [12].

Proof. (Luo [12]) As o constitutes a section of U, by definition Woo = Id. Because W (2, T)
is convex, there is a homotopy

(1 —1t)(ocoW)+tld

from o o ¥ to the identity map of W (Q,T), so that X(€,T) and the contractible space

W(Q,T) have the same homotopy type. [

11



CHAPTER III
STAR-SHAPED QUADRILATERALS

One result which addresses a special case of Conjecture 1.4.1 is due to Luo, who in [11]
sketched a proof showing the contractibility of X (£2,7), where €2 is a strictly star-shaped
quadrilateral, by using concepts from projective geometry. The aim of this Chapter will be

to formalize this aforementioned proof.
3.1 Projective Geometry

We begin by recalling an important theorem from the field of projective geometry, with the
eventual goal of establishing a relation between two strictly star-shaped quadrilaterals which

differ only by the location of their reflex vertices.

Theorem 3.1.1 Given two quadrilaterals (1 and Qo which do not contain collinear vertices,

there is a unique isomorphism ¢ : RP? — RIP? taking Q1 to Qo and which maps lines to lines.

3.2 Proof of the Main Result

Theorem 3.2.1 (Luo [11]) If Q is a strictly star-shaped quadrilateral with reflex vertez v,

and T is any triangulation of Q without dividing edges, then X (2, T') is contractible.

Proof. Let Q denote the convex hull of ), which in this case is a triangle, and let T be the
triangulation of Q induced by regarding the vertex v, — which is now in the interior of =
as an interior vertex of (?2, f), which we denote as 7,, and the two boundary edges of (€2, T")

connected to v, as interior-to-boundary edges in (Q,T) (see Figure 5 below).

12



Figure 5: A geodesic triangulation of (€2, T) induces a geodesic triangulation of (Q, T ).

Let A = Int((l) and define the projection map m : X (ﬁ,f) — A by sending a given
7€ X(Q,T) to the coordinates of @, in 7, which we denote by 7(%,). Observe that for any
v € A, the preimage 71 (v) is precisely the subspace of X(ﬁ, Tv) consisting of the 7 € X(ﬁ, TV)
for which 7(0,) = v; thus it is reasonable to identify this preimage with X (Q,,T), which is
the space of geodesic triangulations of the quadrilateral (), which has the same boundary

vertices as ) except with v, changed to v, meanwhile maintaining the original triangulation

T.

Lemma 3.2.1 Fiz any Q, as above and let ¢, be the unique isomorphism from Theorem

3.1.1 which sends Q to Q,. Then for any T € X(Q,T), the image ¢,(7) € X(Q,,T).

Proof. To show that ¢,(7) € X(Q,,T), we want to prove that this graph is a straight-
line embedding of (Q,,7") which fixes @,. The map ¢, sends an interior edge e of 7 to a
line segment ¢,(e) by definition; as such, ¢,(7) is a straight-line embedding of 7™ in Q,.
Moreover, ¢,(e) is also an edge within the interior of ¢,(2) = @, because, otherwise, it
would intersect a boundary edge of @),, thus contradicting the one-to-one correspondence of

G- ]

One consequence of Lemma 3.2.1 is that the map ¢, : X(Q,T) — X(Q,,T) is a well-

defined homeomorphism.

13



Corollary 3.2.1 For every v € A, X(Q,T) ~ X(Q,,T); in other words, F := n=(v,) ~

7 1(v).

Lemma 3.2.2 The structure (A, X(Q,T),ﬂ', F) is a trivial fiber bundle.

Proof. Define the function @ : X(€,T) — A x F by

where 7 = ¢T’(%T)(T) € X(Q,T). This function is continuous and is also injective because
if 71(0,) = 72(0,) and 71 = 7o, then 7, = 75 as ¢, (5,) is itself injective. The map @ is also
surjective because, given (v,7) € A x F, there is an element 7 € 7! (v) for which 7 = ¢, 1(7)

from surjectivity of ¢,. From this, we conclude that ® is a global trivialization. [ |

As a result, we obtain the product
X(Q,T)~AxF (3.2.1)

Because € is convex, then the left-hand of (3.2.1) must be contractible from Corollary

1.3.1. Since A is also contractible, we conclude that the same holds for F' = X(Q,7). R

14



CHAPTER IV
GEODESIC TRIANGULATIONS

Let Q be a convex polygon and T a triangulation of €2. The goal of this chapter is to
establish new results regarding how a geodesic triangulation 7 = W(w) € X (£, T) behaves,
for some arbitrary w € W(Q,T'), as we perturb a certain interior-to-boundary edge weight

within w.

4.1 Varying the Weights

Consider a weight w = (w;;) € W(Q,T) and fix any v? € Vp with v/, an interior vertex

adjacent to v2. To reduce cumbersome notation in the following calculations, relabel v¥ :=

B 1

vB vl :=wv!  and the corresponding edges and their edge weights.

Now for ¢ > 0 variable, define a new class of weights w(t) by

wiB 4t ifi=j=1,
wi;(t) =
Wy otherwise.
Recall from Chapter 2 that there is a unique solution 7(t) := (v{(t),..., vy, (t)) € X(Q,T),
with v!(t) = (zf(t), y!(t)), to the system

> wl (O] () —vj) + Y wPH)w () —vf) =0, (4.1.1)

I,,1 B, I
CHUx v~y

for i = 1,2,..., N;. As such, to formalize the goal at the beginning of this chapter we wish

to examine the properties of 7(t) as t — oo.

15



4.2 Matrix Representation of Tutte’s System of Equations

The aim of this section is to study the aforementioned properties of 7(t) by taking advantage
of several properties of certain families of matrices, such as that of an M-matrix and a weakly
chained diagonally dominant matrix, whose definitions we recall below. To that end, our
first goal will be to rewrite the system (4.1.1) above in matrix form in order to give an
explicit equation for v!(t). Start by defining the N; x Np matrix of interior-to-boundary
edge weights W (t) by
wiP+t ifi=j=1,
Wi;(t) =

1B
]

Likewise, define the N; x N; matrix S(t) by

w otherwise.

)
= ki S+ 202 Wan(t) if i = j,

\0 if v} % 0],
where S, := Six(0). To shed some light on this matrix, observe that the sign of the diagonal
entries S;; are positive whereas for the off-diagonal entries it is non-positive. Moreover, S;;
is merely the sum of the edge weights for the edges connected to v!: S;; = >, wir(t).
With a computation similar to that in [11] — although we should note that the compu-

tation shown in [11] was only concerned with specific edge weights and did not involve a

variable t — we can rewrite Equation (4.1.1) in matrix notation as
M(t)x(t) = b, and M(t)y(t) = by, (4.2.1)

where M (t) is the (N; + Ng) x (N; + Ng) block matrix

16



with z(t) = [z{(t) - xf,(t) zf --- 2§, )" and by = [0 --- 02 --- 2§ ]" so that y(t)
and b, are defined similarly.
At this point, we want to transition and briefly discuss a class of matrices with several

useful properties that will allow us to eventually derive an explicit equation for v ().

Definition 4.2.1 The directed graph of an n x n square matric A = (a;;) is a graph

consisting of vertices {1,2,...,n}, where there is an edge connecting 1 < i,7 < n if and only

Zf Q45 7é 0.

Definition 4.2.2 An n x n square matrix A is weakly diagonally dominant if for all

1< <n,

Al =) 1A,
J#1
If we replace the inequality above with a strict inequality, we say that A is strictly diago-

nally dominant.

Definition 4.2.3 A square matriz A is weakly chained diagonally dominant if
1. A is weakly diagonally dominant, and

2. For all rows iy that are not strictly diagonally dominant, there is a path from iy to iy

in the directed graph of A ending at a strictly diagonally dominant row iy.
Lemma 4.2.1 For everyt >0, S(t) is a weakly chained diagonally dominant matriz.

Proof. For any 1 <14 < Ny, observe that
N[ NB NI
|Su(t)] = — Z Sik + Z Wir(t) > — Zsilm
ki k=1 ki
so that Condition (1) of Definition 4.2.3 holds.
On the other hand, let i; be a row of the directed graph of S(t) which is not strictly
diagonally dominant; in other words, S0, Wi ,(t) vanishes so that v! is not adjacent to

any boundary vertex of (€2, T'). Because (Q,T) is connected, there is a path from v to some

17



I

v; such that this latter interior vertex is adjacent to a boundary vertex. Because row iy, is

strictly diagonally dominant by definition, Condition (2) holds as well. [ |

Because S(t) is weakly chained diagonally dominant, then it is invertible by [13] and we

can write the inverse of M(t) as

MY(t) =
0 Id
As such, the solutions to (4.2.1) are
' (t) = STHHOW ()x® and y'(t) = STHEH)W ()y”, (4.2.2)
where 2% = [28 ... xﬁB]T and similarly for y”. In other words, (4.2.2) expresses the solution

7(t) to (4.1.1) in terms of S(t), W (t), and the boundary vertices.

4.3 Limiting Behavior of the Interior Vertices

We begin by stating two concepts which will relate to S(¢) :

Definition 4.3.1 A square matriz is an M-matrixz if it has non-positive off-diagonal en-

tries and eigenvalues with nonnegative real parts.

Lemma 4.3.1 (Bramble [5]) If A is a weakly chained diagonally dominant matriz with

non-positive off-diagonal and positive diagonal entries, then it is an M-matrix.

We use Lemma 4.3.1 to establish the following Proposition regarding the behavior of 7(t)

as t — 0o, namely we show that the interior vertices of 7(t) in fact converges.
Proposition 4.3.1 The limit of v}(t) as t — oo exists for every 1 < k < Nj.

Proof. For any t > 0, consider the column vectors ¢ = [1 0 --- 0]T and b = ¢ - ¢, both of
which are of length N;. Because S := S(0) in particular satisfies the hypothesis of Lemma

4.3.1, then it is an M-matrix and thus by the monotonicity property of such a matrix we have
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that every entry in S~' is non-negative. Consequently, 14 ¢’'S~'b = 1 + S;;*t > 0. Because
S~1(t) is the inverse of the sum of S and a rank-1 matrix, we utilize the Sherman-Morrison

Formula [9] to obtain

1

ST S+0b St S~ 571

(1) = (5 +bT) S e

_ o1 t —1g-1
1+ S5t t
Consequently, as t — co we have
t Sty
Sttt =8 — ——5- 818 — S - = (4.3.1)
J J 1 +5111t 1~ J 5111

where S;;' # 0 by the following Lemma:
Lemma 4.3.2 S;;' > 0.

Proof. Multiplying the first row of S with the first column of S~! yields
(Z w1k> Sl_ll + 51252_11 + -+ SINIS]:[IH =1
k1
Because S~! > 0 and likewise for every —Sy;, then using the fact that at least one wy;, is
I

non-zero — otherwise v/ would not be connected to any interior vertex — then solving for Si;'

gives the desired inequality. [ |

Now consider the N; x Np intermediary matrix A(t) = S71(¢)W (¢). Because

Z Szk’ Wk]

and Wy, (t) is constant except when k& = j = 1, then in light of the convergence of Equation
(4.3.1) we only need to check that S;;*(t)W;(t) converges as well in order to complete our

proof.
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To that end, for any 1 <7 < Ny a straightforward computation shows that

_ _ t 1
Sit (Wi (t) = <Si11 - TSlftS“lS”l) (wiy +1)

Silt(wif + 1)
-1 1 HWn

=9, wiy + 1

. ( M 14 St

wiy; +1
— g1 =L - 7
i (1+Snlt>

which limits to S;;'/S;;' as t — oo, which again is well-defined from Lemma 4.3.2 above. As
such, for every 1 <i,57 < Ny, A;;(t) converges as t — oo and consequently the same holds

for every limy o, vi(t). [ |
As a direct result of the preceding Proposition, we obtain the following Corollary:

Corollary 4.3.1 The interior vertez vi(t) converges to v2 ast — oo.

Proof. Keeping the notation of the previous proof,

Np
{(t) = row; (A(t)z” =) (Z ST Wi (1) ) zl.
m=1
For m = 1, the inner sum limits to 1 as ¢ — oo since
N g1 Nip
An(t) = S OWu () + ) Si (Wi — % +) 0=1,
k=2 11 k=2

and 0 for m # 1 because for all 1 < k < Ny,

S te-t
SO Wi — (S;,j — %) Wi = 0.
11

Repeating the same process for yi (), we see that (z1(¢),y/(t)) — (2P, yP)ast - 0. W
From Proposition 4.3.1, we showed that the interior vertices converges as t — co. How-
ever, we made no mention of the behavior of the interior edges, which of course is salient in

determining whether 7(¢) is an embedding at the limit. In other words, we must consider

the limiting behavior of the graph 7(¢) in its entirety.
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4.4 Limiting Behavior of the Interior Edges

Before considering this limiting behavior, observe that our choice of v/ € N(v?)NV;, where
N(v) denotes the set of neighbors of the vertex v, in the previous section was arbitrary.
However, by collapsing v! we may inadvertently collapse a subcomplex of the subgraph of

(92, T) which contains v!, and v2 as part of its boundary; see Figure 6 for such a subcomplex.

I

In the first part of this section, we prove that, in fact, there always exists a certain v,,

for which this does not occur.

Definition 4.4.1 A triangle subgraph is a subgraph of (2,T) which is the 1-skeleton of

a triangulated triangle.

One combinatorial remark we would like to make is the

Vi

following: Let (£2,7T) be a triangulated convex polygon. A

triangle subgraph of (€2, 7)) which contains v and v? as
part of its boundary is the only subcomplex configuration
S of (Q,T) such that if we identify v/, with vZ, then S

will be identified to a line segment. Vo

. . . I .
Lemma 4.4.1 Consider a boundary vertez vy of (Q,T). Figure 6: Taking vy (t) — vo will

Then there is an interior verter vi € N(vo) such that it collapse a triangle subgraph that

. . . I
18 not a boundary vertex of a triangle subgraph which con- contains one Interior vertex v;.

tains an interior vertez of (2, T) within the region bounded
by the boundary of this subgraph. In other words, there is no vo € V' for which the triangle

subgraph A := Avgvivy both exists and has any v} € Vi within its interior.

Proof. By way of contradiction, suppose that for every interior vertex v; € N(vg) there is
such a v; 9 € N(v]) N N(vp) for which the triangle subgraph A; := Avgv/v; 5 exists and there
are interior vertices of (£2,7") contained within the region bounded by this triangle. Consider

any such, which we can label A;. Because A; is triangulated by definition, there is a vertex
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vy € V interior to A; such that it is the boundary vertex of a triangle Ay C A;. Continuing
in this manner with the existence of a vertex v3 € V within A, and a corresponding triangle
Az C Ay with vz as one of its boundary vertices, we eventually achieve a contradiction as

the number of interior vertices of (€2, 7) is finite. |

As such, for any vf € Vg there is a v € N(vP) NV; for which deforming w{? does not
collapse a subcomplex in the manner described above.
When this v! collapses to vP via the process introduced in the previous section, it is the

case that two interior edges adjacent to v/ degenerate to either
e two boundary edges,
e one interior edge and one boundary edge, or
e two interior edges,

as depicted in Figure 7 below. Consequently, lim; .o, 7(t) & X (£2,7) as one might expect.
Regardless, we still want to examine the combinatorics of this limiting behavior, and to do
so we must study the edge weight of these aforementioned edges adjacent to v?.

In the first case where they both collapse to two boundary edges, then there is no concern
as edge weights are only assigned to interior edges. As such, we need only consider the two
cases where either one or both of these strictly interior edges collapse to another interior
edge. In the following Proposition, we consider the case where these two aforementioned
interior edges adjacent to v! collapse to one interior edge and one boundary edge. (The

other case can be resolved in a similar manner.)

Proposition 4.4.1 Let A denote the triangle subgraph formed by vy, vi, and v, if any such
triangle exists. (Recall that by construction, this subgraph has empty interior.) Then as
t — oo, the interior edge el = ell is identified to el and the corresponding edge weight of

this mew interior-to-boundary edge is precisely why := wil + wib.
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Vi

Figure 7: Letting v!(t) — vy collapses two interior edges adjacent to v to two other edges.

Proof. Recall that we have the augmented Tutte system of equations
0= wu(®)(v(t) —ui(t),
v EN(v])
for every 1 < k < Nj. (Of course, if v; is a boundary vertex then v;(t) = v;.)
If we take the limit of the above system as ¢ — oo, then for every k # 1,2 we have as

our limiting value

0= wki(Vf 0 — Vi), (4.4.1)

v EN(v])
where v; oo = lim;_,o v;(t). From Corollary 4.3.1, the equation for £ = 1 vanishes as v{m =N
is no longer interior in €.
Finally, for £ = 2 we have

0 = wa(V3,00 — V0) + W21 (V3 0 — V10o) + > wWai (Vf, o0, — V)
v €N (v3)\{vo,v1}

= who(v5 o —w0) + Y wy(v), — vi), (4.4.2)
voyéviEN(vé’oo)

as required. ]

Consequently, the N; — 2 equations (4.4.1) and the one equation (4.4.2) comprises a Tutte

1 1

2,00+ s UN, .00, DECAUSE the

system of equations with N; — 1 equations in N; — 1 unknowns v

new set of coefficients w’ = {w},} in this system are

e For k=2 :1If i = 0 then why := wyy + wq; and wh; := wy; otherwise if v; ~ vl
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e For 2 <k < Np:wj, :=wy if v; ~vf .

Because every entry of w’ is non-negative, then it is a weight of (£2,7”) so that the above
system has a unique solution 7., = (V] ,..., V5, ) € X(Q,T") by Tutte’s Embedding
Theorem, where T” is specified below.

To be more precise in our definition of the triangulation 7" of (2 that is obtained from 7" by
identifying v! to vy in the above deformation — and to show that it is indeed a triangulation

of €2 — observe from Figure 7 that this process results in the loss of
e three interior edges of T, one of which is e{f,
e two faces of T', and
e one interior vertex of 7.

As such, the Euler characteristic of the resulting connected planar graph (€2, 7") is then
V-1)—(F-3)+(F-2)=V —-E+F,

which is exactly the Euler characteristic of (€2, 7). In other words, the obtained combinatorics
T of Q is still a triangulation of €.

This yields our main result of this Chapter:

Theorem 4.4.1 Define the function fs : X(Q,T) — X(Q,7") by
JoolT) = Too 1= tlim 7(t).

—00

Then f. is both well-defined and continuous.
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4.5 Motion of the Interior Vertices

One interesting characteristic of 7(¢) pertains to the motion of its interior vertices as t — oc.

Proposition 4.5.1 As a function of t, the direction of each v}(t) € Vi is parallel to that of
vi(t). Moreover, this latter vertex moves at the fastest speed relative to every other interior

vertex.

Proof. First, we compute the matrix derivative

LT I R P i
dt 0 0
S (t)
N R ) (45.1)
Syh(t)

A similar calculation holds for %yl (t); from these two derivatives, we conclude that the
motion of every v} (t) is always parallel to that of v{(¢).

To prove the second claim, we use the following Lemma due to Shivakumar:

Lemma 4.5.1 (Shivakumar [13]) For a weakly-chained diagonally dominant M-matriz
-1 -1
A, AG < A
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An application of this Lemma to S yields S;;'(¢t) > Sj_ll(t) for every 2 < j < Nj.

Combining this inequality with (4.5.1) implies v{(¢) has the greatest speed. |

We conclude this Chapter by establishing the following Proposition, which shows the

path of each interior vertex v!(t) as we perturb t:
Proposition 4.5.2 Every vl(t), for 1 <i < Np, travels in a straight-line motion.

Proof. Observe that, from Equation (4.5.1), the interior vertex v/(¢) has initial direction
vB — v1(0). For the sake of contradiction, suppose that this vertex does not move in a
straight-line motion as a function of ¢ and let ¢y denote the first time value for which v!(¢)
does not point in the direction v2 — v!(0). However, this contradicts the fact that v/ (¢) has

direction vP — vl (ty) at t = t,. |
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CHAPTER V
STAR-SHAPED POLYGONS

In this Chapter, we briefly discuss a possible approach toward showing that X (€, T)
is contractible, where (2,7 is a triangulated strictly star-shaped polygon with one reflex

vertex vy, = vy = (&, %) € R? and T does not contain any dividing edges.

5.1 The Weight Space

The primary reason why we avoid directly manipulating the coordinates of the interior
vertices of elements in X (Q2,7) is that it is difficult to systematically perturb them while
avoiding collisions with edges or other vertices — moreso if Ny is very large. Instead, we wish
to work with the weight space W (€, T) of a triangulated convex polygon (€, T) which is
related to (€2, 7") in the manner depicted below, the two upsides being that W(ﬁ, Tv) is convex
and, if we deform a 7 = U(w) € X (€, T), for some weight w € W (€, T'), by varying the edge
weight of a certain interior-to-boundary edge in w in the manner constructed in Chapter IV,

then we can continuously map 7 to a similar 7/ € X ((NZ, f) without any degeneracies.

5.2 Convex Hull of a Star-Shaped Polygon

To that end, we define (Q,T) as follows:

e Let Q be the convex polygon obtained by taking the convex hull of €2 — that is, we form

a boundary edge connecting the only two boundary vertices vg,_, and vy _, adjacent

to v,;

e Because v, is in the interior of ﬁ, form the triangulation T of Q by now treating v, as
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an interior vertex of 7', which we denote by v, = v;’\,[ +1, and the two boundary edges

eﬁgfL N eﬁgfz ~g Of (€, T) as now interior-to-boundary edges of 7', which is denoted

by 6{V€+17NB—1 and 6{V€+1,NB—27 respectively.
This yields the following relation:
Lemma 5.2.1 There exists an embedding X (0, T) — X (Q,T).

Proof. This is given by (v{,v3,... vk, ) — (vf,v], ..., v}, ). |

Note that the ambient space X ((Z,T) is contractible by Corollary 1.3.1. As such, we

conjecture that

Conjecture 5.2.1 There is a deformation retract
D:X(QT)xI—X(Q7T)

from X(Q,T) to X(Q,T).
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