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Abstract: Let X(Ω, T ) denote the space of geodesic triangulations of Ω with combinatorial
type T , where T is a triangulation of a convex polygon Ω embedded in R2, and let W (Ω, T )
be the weight space of (Ω, T ). Using a framework established by Luo which gives a relation
between Tutte’s Embedding Theorem and X(Ω, T ), we prove several new results regarding
the motion and limiting behavior of a geodesic triangulation τ ∈ X(Ω, T ), which is the image
of a weight w ∈ W (Ω, T ) under the Tutte map Ψ : W (Ω, T ) → X(Ω, T ), as we map τ to
another geodesic triangulation of Ω by varying an interior-to-boundary edge weight within
w.

Using these aforementioned results, we then give a possible approach toward studying the
homotopy type of X(Ω, T ), where Ω is strictly star-shaped with one reflex vertex and T is a
triangulation of Ω which contains no dividing edges.
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CHAPTER I

INTRODUCTION

1.1 Introduction

One of the earliest results concerning the space of geodesic triangulations of a polygon

embedded in the plane was established in the 1940s by Cairns [6], who proved that this

space is path-connected if the polygon is a triangle. Several more results regarding the

theory of geodesic triangulations were then proven in the following years, such as [2] and

[10]; in particular, in the 1980s Bloch et al. [3] both strengthened and generalized Cairns’

result above by showing that this space is contractible if the polygon is convex.

We are interested in studying the homotopy type of this space for a similar family of

polygons, namely those which are strictly star-shaped. Luo showed in 2022 that this space

is indeed contractible in the case of a strictly star-shaped quadrilateral [11]. However, one

problem which currently remains open is the general case, specifically whether the space

of geodesic triangulations of an arbitrary strictly star-shaped polygon with a triangulation

containing no dividing edges is contractible.

The primary result of this thesis is as follows: Using a framework given in [12] – which

connects geodesic triangulations to Tutte’s Embedding Theorem – as our starting point, we

construct a map which sends a geodesic triangulation τ of a convex polygon Ω to a similar

geodesic triangulation of Ω, albeit with a new combinatorial type containing one less interior

vertex. Moreover, we establish several new results regarding the behavior of τ under this

mapping. Utilizing these results, we then give a possible approach toward settling the open

problem above.
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1.2 Preliminary Definitions

We begin by recalling several geometric definitions.

Definition 1.2.1 Consider a map ϕ : VB → R2, where VB = {v1, . . . , vNB
, vNB+1 = v1},

such that for every 1 ≤ i ≤ NB, each consecutive pair ϕ(vi) and ϕ(vi+1) is connected by a

line segment and the union of these segments form a simple closed curve in R2. The closure

Ω of the component bounded by this simple closed curve is a polygon Ω embedded in R2,

where VB is the set of boundary vertices of Ω and the aforementioned line segments are

its boundary edges.

Henceforth, unless stated otherwise Ω will denote a polygon which is embedded in R2.

Furthermore, note that Ω is a topologically closed disk.

Definition 1.2.2 A (simple) graph is a tuple G = (V,E) which consists of

• a set of vertices V = {v1, . . . , vK}, and

• a set of edges E, where an edge is defined to be an unordered pair of distinct vertices

{vi, vj}, with 1 ≤ i, j ≤ K.

From the above definition, a graph is a set-theoretic object, but we can regard it as a

topological space constructed by gluing edges, identified as closed intervals in R, along their

vertices.

Definition 1.2.3 A graph G is planar if it can be embedded in R2.

Definition 1.2.4 A planar graph G partitions R2 into path-connected open sets, called the

faces f of G, with precisely one unbounded face.

Definition 1.2.5 A triangulation of Ω is a triple T = (V,E, F ) which consists of a set

of vertices V = VB ⊔ VI , a set of edges E, and a set of faces F such that

• the one-skeleton T (1) of T , determined by V and E as a graph, is embedded in Ω and
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• the boundary of each bounded face of T is a triangle.

In terms of notation, we let the tuple (Ω, T ) denote a polygon Ω with triangulation T .

Moreover, in the above definition VI denotes the set of interior vertices of (Ω, T ) and

NI := |VI |.

Definition 1.2.6 Using the above notation, an edge in E is strictly interior if it con-

nects two interior vertices and interior-to-boundary if it connects an interior vertex to a

boundary vertex; in both cases, they are interior edges of (Ω, T ).

We now arrive at the most important definition in this thesis:

Definition 1.2.7 Let (Ω, T ) denote a triangulated polygon which is given by ϕ. A geodesic

triangulation of Ω with combinatorial type T is an embedding τ : T (1) → R2 of the

1-skeleton of T into R2 such that τ equals ϕ on VB and maps every edge e ∈ E to a line

segment parametrized by unit speed. Let X(Ω, T ) denote the space of geodesic triangulations

of Ω with combinatorial type T .

In particular, we say that τ in Definition 1.2.7 is a straight-line embedding of (Ω, T )

which fixes the boundary polygon Ω.

Figure 1: Only the two left-most diagrams are geodesic triangulations of a 4-gon Ω with a

fixed combinatorial type T .

To gain a more formal understanding of X(Ω, T ), we first remark that because every

geodesic triangulation τ ∈ X(Ω, T ) is uniquely determined by the coordinates of its interior

vertices in R2, then
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Remark 1.2.1 X(Ω, T ) is a 2NI-dimensional manifold and is endowed with the Euclidean

subspace topology from R2NI .

We now state a special family of triangulated polygons:

Definition 1.2.8 Given a polygon Ω,

• An eye of Ω is a point e ∈ Ω such that for any other point p ∈ Ω, the line segment

connecting e to p is a subset of Ω;

• Ω is strictly star-shaped if it contains an eye, but not every point of Ω is an eye.

Observe that if Ω is strictly star-shaped, then it contains a boundary vertex vr with an

interior angle greater than π. We refer to vr as a reflex vertex.

Definition 1.2.9 For an arbitrary triangulated polygon (Ω, T ), a dividing edge of Ω is

an interior edge of T which connects two boundary vertices.

1.3 Historical Background

Regarding the study of geodesic triangulations for an arbitrary polygon Ω with triangulation

T , one of the first results came in the 1940s when Cairns showed that

Theorem 1.3.1 (Cairns [6]) For any triangulation T , X(Ω, T ) is path-connected if Ω is a

triangle.

To that end, several years later Ho [10] improved Cairns’ result above by showing that,

with the same Ω as in Theorem 1.3.1, X(Ω, T ) is simply-connected. Bloch et al. then

strengthened this by proving

Theorem 1.3.2 (Bloch et al. [3]) If Ω is convex, then X(Ω, T ) ≃ R2NI .

Corollary 1.3.1 With the hypothesis in the preceding Theorem, X(Ω, T ) is contractible.
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According to [3], one consequence of the above Corollary is the following classical result

from topology due to Smale:

Theorem 1.3.3 (Smale [14]) The space Diff(D2) of diffeomorphisms of the 2-disk which

fixes the boundary point-wise is contractible.

Comparing an element of Diff(D2) with those in Figure 2, we sometimes refer to the space

of geodesic triangulations X(Ω, T ) of a polygon Ω as a discretized approximation of Diff(D2),

the reason being that, informally speaking, as we keep triangulating Ω, thus increasing the

number of interior vertices in the process, the embeddings will act on a larger and larger

number of interior points, akin to the elements in Diff(D2).

Figure 2: Two elements of X(Ω, T ).

Restricting our attention to the case of star-shaped polygons, in 1978 Bing and Starbird

proved that

Theorem 1.3.4 (Bing and Starbird [2]) If Ω is strictly star-shaped and T has no dividing

edges, then X(Ω, T ) is both non-empty and path-connected.

In fact, the example shown in Figure 3, which is a variant of the one constructed in

[2], shows the importance of the strictly star-shaped hypothesis on Ω in order for the path-
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Figure 3: A triangulated non-star-shaped 9-gon (Ω, T ) with π0X(Ω, T ) ̸= 0.

connected conclusion to hold: In this case, Ω is a non-star-shaped nine-gon with a triangula-

tion T specifying 3 interior vertices, vI1 , v
I
2 , and vI3 , which are pictured in yellow, purple, and

blue, respectively. The embeddings τ1 and τ2 of (Ω, T ) on the left and right, respectively,

are both elements of X(Ω, T ). However, in order to isotope vI1 in τ1 to its position in τ2,

the interior edge eII23 (which is depicted in red) connecting the two vertices vI2 and vI3 must

eventually be horizontal as in the middle diagram to avoid colliding with an interior edge

of vI1 ; but at the instant when this occurs, we obtain a degeneracy with some of the edges

connected to vI1 .

Furthermore, using non-star-shaped polygons, it was shown in 2022 that

Theorem 1.3.5 (Luo [12]) For every n > 0, there exists a triangulated polygon (Ω, T )

such that πnX(Ω, T ) ̸= 0.

1.4 Problem Statement

In light of the results by Bing-Starbird and Luo above, the overarching conjecture of our

thesis is as follows:

Conjecture 1.4.1 If (Ω, T ) is a triangulated star-shaped polygon with one reflex vertex and

no dividing edges, then X(Ω, T ) is contractible.
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1.5 Outline

In Chapter II, we recall a framework introduced by Luo in [12] which related an analogue

of Tutte’s Embedding Theorem to the study of geodesic triangulations in that it resulted in

a new proof of Corollary 1.3.1; in particular, we review the definition of the weight space

W (Ω, T ) of (Ω, T ) as well as the construction of the Tutte map Ψ : W (Ω, T ) → X(Ω, T ).

Chapter III formalizes a proof sketch given in [11] which addresses a special case of Conjecture

1.4.1, namely when Ω is a strictly star-shaped quadrilateral. In Chapter IV, we then prove

several new results pertaining to the behavior of any τ ∈ X(Ω, T ), where Ω is an arbitrary

convex polygon with triangulation T , when we increase an interior-to-boundary edge weight

within a weight w ∈ W (Ω, T ) which is related to τ via τ = Ψ(w). Finally, in Chapter V we

give a possible approach toward proving Conjecture 1.4.1 by applying several results from

the previous Chapter.
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CHAPTER II

TUTTE’S EMBEDDING THEOREM

Let (Ω, T ) denote a convex polygon Ω with triangulation T . In [12], Luo gave a connection

between Tutte’s Embedding Theorem [15], which is a classical result from graph theory

that gives a method for straight-line embedding certain planar graphs into R2 in a particular

manner, to the spaceX(Ω, T ). In particular, he used this link to give a new proof of Corollary

1.3.1, which states that X(Ω, T ) is contractible.

In this chapter, we will review Tutte’s theorem, an analogue of this theorem due to

Floater [8], as well as the proof mentioned above, and several concepts from this Chapter

will be used in Chapter IV.

2.1 Statement of Tutte’s Theorem

Before stating this Theorem, we first review several definitions from graph theory.

Definition 2.1.1 Given a graph G = (V,E) and two distinct vertices v1, v2 ∈ V , a path

from v1 to v2 is a sequence of edges which joins v1 to v2. If such a path exists, then v1 is

connected to v2. In addition, G is connected if every pair of distinct vertices is connected.

Definition 2.1.2 A graph G is k-vertex-connected if, after the deletion of any set A =

{vi1 , vi2 , . . . , vim} of fewer than k vertices in G, along with all of the edges (vi, vj) for which

vi ∈ A or vj ∈ A, the graph remains connected.

Theorem 2.1.1 (Tutte [15]) Given a 3-vertex-connected planar (simple) graph G such

that its outer face is a convex polygon, there is a straight-line embedding of G into R2 such

that each interior vertex of G is in the barycenter of its neighbors.
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In 2003, Floater [8] gave a reformulation of Theorem 2.1.1 in the case of a triangulated

2-disk, which is more relevant to our work as we are concerned with triangulated polygons.

The following algorithm, which is referred to in [12] as Tutte’s Method, is used to produce

a geodesic triangulation of (Ω, T ).

(1) Assign every interior directed edge eij of (Ω, T ) a scalar wij > 0, which we refer to as

the edge weight of eij (we need not require wij = wji);

(2) Fix the coordinates of each boundary vertex vBi ∈ VB of Ω;

(3) Solve the Tutte system of equations below, which consists of 2NI equations, for

the coordinates of the interior vertices vIi ∈ VI :

∑
vIi ∼vj

wI
ij(v

I
i − vj) = 0,

where vj ∈ R2 ranges over all boundary and interior vertices of (Ω, T ) and where

vIi ∼ vj means that vIi is adjacent to vj. This solution exists and is unique;

(4) Place each interior vertex vIi in the plane according to the coordinates obtained in Step

(3) and connect the vertices with line segments specifed by T . This yields an element

of X(Ω, T ).

9



2.2 Application to the Case of a Convex Polygon

In this section, we restate the proof of Corollary 1.3.1 given in [12] as well as the preceding

concepts. As before, Ω will denote a convex polygon.

Definition 2.2.1 An NI × |V | matrix (wij) of edge weights wij is a weight of (Ω, T ) if

• wij = 0 if vi ̸∼ vj;

• wij > 0 if vi ∼ vj.

Let W (Ω, T ) denote the space of weights of (Ω, T ), which we call its weight space.

Definition 2.2.2 The Tutte map Ψ : W (Ω, T ) → X(Ω, T ) is defined by sending a weight

(wij) to the (unique) geodesic triangulation specified by solving the Tutte system of equations

with the edge weights of (wij) as coefficients.

Figure 4: The

Mean Value Co-

ordinates.

To give a topological grounding of the space defined above, we have

that

Remark 2.2.1 W (Ω, T ) is a convex subset of the vector space MR(NI ×

|V |).

The following map, which is due to Floater, gives a method for moving

from the space of weights to the space of geodesic triangulations:

Definition 2.2.3 (Floater [7]) Let τ ∈ X(Ω, T ). For every directed

interior edge eij of τ , define

cij =
tan
(
aji/2

)
+ tan

(
bji/2

)
||vi − vj||

,

where || · || denotes the Euclidean norm in R2 and aji , b
j
i are depicted in Figure 4.

The Mean Value Coordinates of each eij is defined as

wij =
cij∑

v·k∼vIi
cik

.
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The following map gives us a section of Ψ:

Definition 2.2.4 The Floater map σ : X(Ω, T ) → W (Ω, T ) sends a geodesic triangulation

to a weight specified by the Mean Value Coordinates.

One important observation regarding σ is that it is continuous.

Lemma 2.2.1 The Tutte map Ψ is both continuous and surjective.

Proof. (Luo [12]) The function Ψ is continuous due to the continuous dependence of the so-

lution of the Tutte system of equations on the coefficients of the system, whereas surjectivity

follows from the fact that the Floater map σ is a section of Ψ.

We now state the proof of Corollary 1.3.1 given in [12].

Proof. (Luo [12]) As σ constitutes a section of Ψ, by definition Ψ◦σ = Id. Because W (Ω, T )

is convex, there is a homotopy

(1− t)(σ ◦Ψ) + tId

from σ ◦ Ψ to the identity map of W (Ω, T ), so that X(Ω, T ) and the contractible space

W (Ω, T ) have the same homotopy type.

11



CHAPTER III

STAR-SHAPED QUADRILATERALS

One result which addresses a special case of Conjecture 1.4.1 is due to Luo, who in [11]

sketched a proof showing the contractibility of X(Ω, T ), where Ω is a strictly star-shaped

quadrilateral, by using concepts from projective geometry. The aim of this Chapter will be

to formalize this aforementioned proof.

3.1 Projective Geometry

We begin by recalling an important theorem from the field of projective geometry, with the

eventual goal of establishing a relation between two strictly star-shaped quadrilaterals which

differ only by the location of their reflex vertices.

Theorem 3.1.1 Given two quadrilaterals Q1 and Q2 which do not contain collinear vertices,

there is a unique isomorphism ϕ : RP2 → RP2 taking Q1 to Q2 and which maps lines to lines.

3.2 Proof of the Main Result

Theorem 3.2.1 (Luo [11]) If Ω is a strictly star-shaped quadrilateral with reflex vertex vr

and T is any triangulation of Ω without dividing edges, then X(Ω, T ) is contractible.

Proof. Let Ω̃ denote the convex hull of Ω, which in this case is a triangle, and let T̃ be the

triangulation of Ω̃ induced by regarding the vertex vr – which is now in the interior of Ω̃ –

as an interior vertex of (Ω̃, T̃ ), which we denote as ṽr, and the two boundary edges of (Ω, T )

connected to vr as interior-to-boundary edges in (Ω̃, T̃ ) (see Figure 5 below).

12



Figure 5: A geodesic triangulation of (Ω, T ) induces a geodesic triangulation of (Ω̃, T̃ ).

Let ∆ = Int(Ω̃) and define the projection map π : X(Ω̃, T̃ ) → ∆ by sending a given

τ ∈ X(Ω̃, T̃ ) to the coordinates of ṽr in τ , which we denote by τ(ṽr). Observe that for any

v ∈ ∆, the preimage π−1(v) is precisely the subspace ofX(Ω̃, T̃ ) consisting of the τ ∈ X(Ω̃, T̃ )

for which τ(ṽr) = v; thus it is reasonable to identify this preimage with X(Qv, T ), which is

the space of geodesic triangulations of the quadrilateral Qv which has the same boundary

vertices as Ω except with vr changed to v, meanwhile maintaining the original triangulation

T .

Lemma 3.2.1 Fix any Qv as above and let ϕv be the unique isomorphism from Theorem

3.1.1 which sends Ω to Qv. Then for any τ ∈ X(Ω, T ), the image ϕv(τ) ∈ X(Qv, T ).

Proof. To show that ϕv(τ) ∈ X(Qv, T ), we want to prove that this graph is a straight-

line embedding of (Qv, T ) which fixes Qv. The map ϕv sends an interior edge e of τ to a

line segment ϕv(e) by definition; as such, ϕv(τ) is a straight-line embedding of T (1) in Qv.

Moreover, ϕv(e) is also an edge within the interior of ϕv(Ω) = Qv because, otherwise, it

would intersect a boundary edge of Qv, thus contradicting the one-to-one correspondence of

ϕv.

One consequence of Lemma 3.2.1 is that the map ϕv : X(Ω, T ) → X(Qv, T ) is a well-

defined homeomorphism.

13



Corollary 3.2.1 For every v ∈ ∆, X(Ω, T ) ≃ X(Qv, T ); in other words, F := π−1(vr) ≃

π−1(v).

Lemma 3.2.2 The structure
(
∆, X

(
Ω̃, T̃

)
, π, F

)
is a trivial fiber bundle.

Proof. Define the function Φ : X(Ω̃, T̃ ) → ∆× F by

Φ(τ) = (τ(ṽr), τ̃),

where τ̃ = ϕ−1
τ(ṽr)

(τ) ∈ X(Ω, T ). This function is continuous and is also injective because

if τ1(ṽr) = τ2(ṽr) and τ̃1 = τ̃2, then τ1 = τ2 as ϕτ1(ṽr) is itself injective. The map Φ is also

surjective because, given (v, τ̃) ∈ ∆×F , there is an element τ ∈ π−1(v) for which τ̃ = ϕ−1
v (τ)

from surjectivity of ϕv. From this, we conclude that Φ is a global trivialization.

As a result, we obtain the product

X(Ω̃, T̃ ) ≃ ∆× F. (3.2.1)

Because Ω̃ is convex, then the left-hand of (3.2.1) must be contractible from Corollary

1.3.1. Since ∆ is also contractible, we conclude that the same holds for F = X(Ω, T ).

14



CHAPTER IV

GEODESIC TRIANGULATIONS

Let Ω be a convex polygon and T a triangulation of Ω. The goal of this chapter is to

establish new results regarding how a geodesic triangulation τ = Ψ(w) ∈ X(Ω, T ) behaves,

for some arbitrary w ∈ W (Ω, T ), as we perturb a certain interior-to-boundary edge weight

within w.

4.1 Varying the Weights

Consider a weight w = (wij) ∈ W (Ω, T ) and fix any vBn ∈ VB with vIm an interior vertex

adjacent to vBn . To reduce cumbersome notation in the following calculations, relabel vB1 :=

vBn , v
I
1 := vIm, and the corresponding edges and their edge weights.

Now for t ≥ 0 variable, define a new class of weights w(t) by

wij(t) =


wIB

ij + t if i = j = 1,

wij otherwise.

Recall from Chapter 2 that there is a unique solution τ(t) := (vI1(t), . . . , v
I
NI
(t)) ∈ X(Ω, T ),

with vIi (t) = (xI
i (t), y

I
i (t)), to the system

∑
vIj∼vIi

wII
ij (t)(v

I
i (t)− vIj (t)) +

∑
vBj ∼vIi

wIB
ij (t)(vIi (t)− vBj ) = 0, (4.1.1)

for i = 1, 2, . . . , NI . As such, to formalize the goal at the beginning of this chapter we wish

to examine the properties of τ(t) as t −→ ∞.

15



4.2 Matrix Representation of Tutte’s System of Equations

The aim of this section is to study the aforementioned properties of τ(t) by taking advantage

of several properties of certain families of matrices, such as that of anM -matrix and a weakly

chained diagonally dominant matrix, whose definitions we recall below. To that end, our

first goal will be to rewrite the system (4.1.1) above in matrix form in order to give an

explicit equation for vIi (t). Start by defining the NI × NB matrix of interior-to-boundary

edge weights W (t) by

Wij(t) =


wIB

ij + t if i = j = 1,

wIB
ij otherwise.

Likewise, define the NI ×NI matrix S(t) by

Sij(t) =


−
∑NI

k ̸=i Sik +
∑NB

k=1Wik(t) if i = j,

−wII
ij if vIi ∼ vIj ,

0 if vIi ̸∼ vIj ,

where Sik := Sik(0). To shed some light on this matrix, observe that the sign of the diagonal

entries Sii are positive whereas for the off-diagonal entries it is non-positive. Moreover, Sii

is merely the sum of the edge weights for the edges connected to vIi : Sii =
∑

k∼iwik(t).

With a computation similar to that in [11] – although we should note that the compu-

tation shown in [11] was only concerned with specific edge weights and did not involve a

variable t – we can rewrite Equation (4.1.1) in matrix notation as

M(t)x(t) = bx and M(t)y(t) = by, (4.2.1)

where M(t) is the (NI +NB)× (NI +NB) block matrix

M(t) =

S(t) −W (t)

0 Id


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with x(t) = [xI
1(t) · · · xI

NI
(t) xB

1 · · · xB
NB

]T and bx = [0 · · · 0 xB
1 · · · xB

NB
]T so that y(t)

and by are defined similarly.

At this point, we want to transition and briefly discuss a class of matrices with several

useful properties that will allow us to eventually derive an explicit equation for vIi (t).

Definition 4.2.1 The directed graph of an n × n square matrix A = (aij) is a graph

consisting of vertices {1, 2, . . . , n}, where there is an edge connecting 1 ≤ i, j ≤ n if and only

if aij ̸= 0.

Definition 4.2.2 An n × n square matrix A is weakly diagonally dominant if for all

1 ≤ i ≤ n,

|Aii| ≥
n∑

j ̸=i

|Aij|.

If we replace the inequality above with a strict inequality, we say that A is strictly diago-

nally dominant.

Definition 4.2.3 A square matrix A is weakly chained diagonally dominant if

1. A is weakly diagonally dominant, and

2. For all rows i1 that are not strictly diagonally dominant, there is a path from i1 to ik

in the directed graph of A ending at a strictly diagonally dominant row ik.

Lemma 4.2.1 For every t ≥ 0, S(t) is a weakly chained diagonally dominant matrix.

Proof. For any 1 ≤ i ≤ NI , observe that

|Sii(t)| = −
NI∑
k ̸=i

Sik +

NB∑
k=1

Wik(t) ≥ −
NI∑
k ̸=i

Sik,

so that Condition (1) of Definition 4.2.3 holds.

On the other hand, let i1 be a row of the directed graph of S(t) which is not strictly

diagonally dominant; in other words,
∑NB

k=1Wi1k(t) vanishes so that vIi1 is not adjacent to

any boundary vertex of (Ω, T ). Because (Ω, T ) is connected, there is a path from vIi1 to some
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vIik such that this latter interior vertex is adjacent to a boundary vertex. Because row ik is

strictly diagonally dominant by definition, Condition (2) holds as well.

Because S(t) is weakly chained diagonally dominant, then it is invertible by [13] and we

can write the inverse of M(t) as

M−1(t) =

S−1(t) S−1(t)W (t)

0 Id

 .

As such, the solutions to (4.2.1) are

xI(t) = S−1(t)W (t)xB and yI(t) = S−1(t)W (t)yB, (4.2.2)

where xB = [xB
1 · · · xB

NB
]T and similarly for yB. In other words, (4.2.2) expresses the solution

τ(t) to (4.1.1) in terms of S(t),W (t), and the boundary vertices.

4.3 Limiting Behavior of the Interior Vertices

We begin by stating two concepts which will relate to S(t) :

Definition 4.3.1 A square matrix is an M-matrix if it has non-positive off-diagonal en-

tries and eigenvalues with nonnegative real parts.

Lemma 4.3.1 (Bramble [5]) If A is a weakly chained diagonally dominant matrix with

non-positive off-diagonal and positive diagonal entries, then it is an M-matrix.

We use Lemma 4.3.1 to establish the following Proposition regarding the behavior of τ(t)

as t → ∞, namely we show that the interior vertices of τ(t) in fact converges.

Proposition 4.3.1 The limit of vIk(t) as t → ∞ exists for every 1 ≤ k ≤ NI .

Proof. For any t ≥ 0, consider the column vectors c = [1 0 · · · 0]T and b = t · c, both of

which are of length NI . Because S := S(0) in particular satisfies the hypothesis of Lemma

4.3.1, then it is anM -matrix and thus by the monotonicity property of such a matrix we have
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that every entry in S−1 is non-negative. Consequently, 1 + cTS−1b = 1 + S−1
11 t > 0. Because

S−1(t) is the inverse of the sum of S and a rank-1 matrix, we utilize the Sherman-Morrison

Formula [9] to obtain

S−1(t) = (S + bcT )−1 = S−1 − 1

1 + S−1
11 t

S−1bcTS−1

= S−1 − t

1 + S−1
11 t

S−1
·1 S−1

1· .

Consequently, as t → ∞ we have

S−1
ij (t) = S−1

ij − t

1 + S−1
11 t

S−1
i1 S−1

1j −→ S−1
ij −

S−1
i1 S−1

1j

S−1
11

, (4.3.1)

where S−1
11 ̸= 0 by the following Lemma:

Lemma 4.3.2 S−1
11 > 0.

Proof. Multiplying the first row of S with the first column of S−1 yields(∑
k∼1

w1k

)
S−1
11 + S12S

−1
21 + · · ·+ S1NI

S−1
NI1

= 1.

Because S−1 ≥ 0 and likewise for every −S1i, then using the fact that at least one w1k is

non-zero – otherwise vI1 would not be connected to any interior vertex – then solving for S−1
11

gives the desired inequality.

Now consider the NI ×NB intermediary matrix A(t) = S−1(t)W (t). Because

Aij(t) =

NI∑
k=1

S−1
ik (t)Wkj(t),

and Wkj(t) is constant except when k = j = 1, then in light of the convergence of Equation

(4.3.1) we only need to check that S−1
i1 (t)W11(t) converges as well in order to complete our

proof.
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To that end, for any 1 ≤ i ≤ NI a straightforward computation shows that

S−1
i1 (t)W11(t) =

(
S−1
i1 − t

1 + S−1
11 t

S−1
i1 S−1

11

)
(wIB

11 + t)

= S−1
i1

(
wIB

11 + t− S−1
11 t(w

IB
11 + t)

1 + S−1
11 t

)

= S−1
i1

(
wIB

11 + t

1 + S−1
11 t

)
,

which limits to S−1
i1 /S−1

11 as t → ∞, which again is well-defined from Lemma 4.3.2 above. As

such, for every 1 ≤ i, j ≤ NI , Aij(t) converges as t → ∞ and consequently the same holds

for every limt→∞ vIk(t).

As a direct result of the preceding Proposition, we obtain the following Corollary:

Corollary 4.3.1 The interior vertex vI1(t) converges to vB1 as t → ∞.

Proof. Keeping the notation of the previous proof,

xI
1(t) = row1(A(t))x

B =

NB∑
m=1

(
NI∑
k=1

S−1
1k (t)Wkm(t)

)
xB
m.

For m = 1, the inner sum limits to 1 as t → ∞ since

A11(t) = S−1
11 (t)W11(t) +

NI∑
k=2

S−1
1k (t)Wk1 −→

S−1
11

S−1
11

+

NI∑
k=2

0 = 1,

and 0 for m ̸= 1 because for all 1 ≤ k ≤ NI ,

S−1
1k (t)Wkm −→

(
S−1
1k − S−1

11 S
−1
1k

S−1
11

)
Wkm = 0.

Repeating the same process for yI1(t), we see that (xI
1(t), y

I
1(t)) −→ (xB

1 , y
B
1 ) as t → ∞.

From Proposition 4.3.1, we showed that the interior vertices converges as t → ∞. How-

ever, we made no mention of the behavior of the interior edges, which of course is salient in

determining whether τ(t) is an embedding at the limit. In other words, we must consider

the limiting behavior of the graph τ(t) in its entirety.
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4.4 Limiting Behavior of the Interior Edges

Before considering this limiting behavior, observe that our choice of vIm ∈ N(vBn )∩VI , where

N(v) denotes the set of neighbors of the vertex v, in the previous section was arbitrary.

However, by collapsing vIm we may inadvertently collapse a subcomplex of the subgraph of

(Ω, T ) which contains vIm and vBn as part of its boundary; see Figure 6 for such a subcomplex.

In the first part of this section, we prove that, in fact, there always exists a certain vIm

for which this does not occur.

Definition 4.4.1 A triangle subgraph is a subgraph of (Ω, T ) which is the 1-skeleton of

a triangulated triangle.

Figure 6: Taking vI2(t) → v0 will

collapse a triangle subgraph that

contains one interior vertex vI1 .

One combinatorial remark we would like to make is the

following: Let (Ω, T ) be a triangulated convex polygon. A

triangle subgraph of (Ω, T ) which contains vIm and vBn as

part of its boundary is the only subcomplex configuration

S of (Ω, T ) such that if we identify vIm with vBn , then S

will be identified to a line segment.

Lemma 4.4.1 Consider a boundary vertex v0 of (Ω, T ).

Then there is an interior vertex vI1 ∈ N(v0) such that it

is not a boundary vertex of a triangle subgraph which con-

tains an interior vertex of (Ω, T ) within the region bounded

by the boundary of this subgraph. In other words, there is no v2 ∈ V for which the triangle

subgraph ∆ := ∆v0v
I
1v2 both exists and has any vIi ∈ VI within its interior.

Proof. By way of contradiction, suppose that for every interior vertex vi ∈ N(v0) there is

such a vi,2 ∈ N(vIi )∩N(v0) for which the triangle subgraph ∆i := ∆v0v
I
i vi,2 exists and there

are interior vertices of (Ω, T ) contained within the region bounded by this triangle. Consider

any such, which we can label ∆1. Because ∆1 is triangulated by definition, there is a vertex
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v2 ∈ V interior to ∆1 such that it is the boundary vertex of a triangle ∆2 ⊂ ∆1. Continuing

in this manner with the existence of a vertex v3 ∈ V within ∆2 and a corresponding triangle

∆3 ⊂ ∆2 with v3 as one of its boundary vertices, we eventually achieve a contradiction as

the number of interior vertices of (Ω, T ) is finite.

As such, for any vB1 ∈ VB there is a vI1 ∈ N(vB1 ) ∩ VI for which deforming wIB
11 does not

collapse a subcomplex in the manner described above.

When this vI1 collapses to vB1 via the process introduced in the previous section, it is the

case that two interior edges adjacent to vI1 degenerate to either

• two boundary edges,

• one interior edge and one boundary edge, or

• two interior edges,

as depicted in Figure 7 below. Consequently, limt→∞ τ(t) ̸∈ X(Ω, T ) as one might expect.

Regardless, we still want to examine the combinatorics of this limiting behavior, and to do

so we must study the edge weight of these aforementioned edges adjacent to vI1 .

In the first case where they both collapse to two boundary edges, then there is no concern

as edge weights are only assigned to interior edges. As such, we need only consider the two

cases where either one or both of these strictly interior edges collapse to another interior

edge. In the following Proposition, we consider the case where these two aforementioned

interior edges adjacent to vI1 collapse to one interior edge and one boundary edge. (The

other case can be resolved in a similar manner.)

Proposition 4.4.1 Let ∆ denote the triangle subgraph formed by v0, v
I
1 , and vI2, if any such

triangle exists. (Recall that by construction, this subgraph has empty interior.) Then as

t → ∞, the interior edge eII12 = eII21 is identified to eIB20 and the corresponding edge weight of

this new interior-to-boundary edge is precisely w′
20 := wII

21 + wIB
20 .
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Figure 7: Letting vI1(t) → v0 collapses two interior edges adjacent to vI1 to two other edges.

Proof. Recall that we have the augmented Tutte system of equations

0 =
∑

vi∈N(vIk)

wki(t)(v
I
k(t)− vi(t)),

for every 1 ≤ k ≤ NI . (Of course, if vi is a boundary vertex then vi(t) = vi.)

If we take the limit of the above system as t → ∞, then for every k ̸= 1, 2 we have as

our limiting value

0 =
∑

vi∈N(vIk)

wki(v
I
k,∞ − vi,∞), (4.4.1)

where vi,∞ = limt→∞ vi(t). From Corollary 4.3.1, the equation for k = 1 vanishes as vI1,∞ = v0

is no longer interior in Ω.

Finally, for k = 2 we have

0 = w20(v
I
2,∞ − v0) + w21(v

I
2,∞ − v1,∞) +

∑
vi∈N(vI2)\{v0,v1}

w2i(v
I
k,∞ − vi)

= w′
20(v

I
2,∞ − v0) +

∑
v0 ̸=vi∈N(vI2,∞)

w2i(v
I
2,∞ − vi), (4.4.2)

as required.

Consequently, the NI − 2 equations (4.4.1) and the one equation (4.4.2) comprises a Tutte

system of equations with NI − 1 equations in NI − 1 unknowns vI2,∞, . . . , vINI ,∞, because the

new set of coefficients w′ = {w′
ki} in this system are

• For k = 2 : If i = 0 then w′
20 := w20 + w21 and w′

2i := w2i otherwise if vi ∼ vI2,∞;
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• For 2 < k ≤ NI : w
′
ki := wki if vi ∼ vIk,∞.

Because every entry of w′ is non-negative, then it is a weight of (Ω, T ′) so that the above

system has a unique solution τ∞ = (vI2,∞, . . . , vINI ,∞) ∈ X(Ω, T ′) by Tutte’s Embedding

Theorem, where T ′ is specified below.

To be more precise in our definition of the triangulation T ′ of Ω that is obtained from T by

identifying vI1 to v0 in the above deformation – and to show that it is indeed a triangulation

of Ω – observe from Figure 7 that this process results in the loss of

• three interior edges of T , one of which is eIB10 ,

• two faces of T , and

• one interior vertex of T .

As such, the Euler characteristic of the resulting connected planar graph (Ω, T ′) is then

(V − 1)− (E − 3) + (F − 2) = V − E + F,

which is exactly the Euler characteristic of (Ω, T ). In other words, the obtained combinatorics

T ′ of Ω is still a triangulation of Ω.

This yields our main result of this Chapter:

Theorem 4.4.1 Define the function f∞ : X(Ω, T ) → X(Ω, T ′) by

f∞(τ) = τ∞ := lim
t→∞

τ(t).

Then f∞ is both well-defined and continuous.
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4.5 Motion of the Interior Vertices

One interesting characteristic of τ(t) pertains to the motion of its interior vertices as t → ∞.

Proposition 4.5.1 As a function of t, the direction of each vIk(t) ∈ VI is parallel to that of

vI1(t). Moreover, this latter vertex moves at the fastest speed relative to every other interior

vertex.

Proof. First, we compute the matrix derivative

d

dt
xI(t) =

d

dt
S−1(t)W (t)xB

=

((
d

dt
S−1(t)

)
W (t) + S−1(t)

d

dt
W (t)

)
xB

= S−1(t)

−

1
0

S−1(t)W (t)xB +

1
0

xB


which, using the first equation in (4.2.2), reduces to

d

dt
xI(t) = S−1(t)

−

1
0

xI(t) +

1
0

xB



=


S−1
11 (t)

...

S−1
NI1

(t)

 (xB
1 − xI

1(t)). (4.5.1)

A similar calculation holds for d
dt
yI(t); from these two derivatives, we conclude that the

motion of every vIk(t) is always parallel to that of vI1(t).

To prove the second claim, we use the following Lemma due to Shivakumar:

Lemma 4.5.1 (Shivakumar [13]) For a weakly-chained diagonally dominant M-matrix

A, A−1
ij ≤ A−1

jj .
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An application of this Lemma to S yields S−1
11 (t) ≥ S−1

j1 (t) for every 2 ≤ j ≤ NI .

Combining this inequality with (4.5.1) implies vI1(t) has the greatest speed.

We conclude this Chapter by establishing the following Proposition, which shows the

path of each interior vertex vIi (t) as we perturb t:

Proposition 4.5.2 Every vIi (t), for 1 ≤ i ≤ NI , travels in a straight-line motion.

Proof. Observe that, from Equation (4.5.1), the interior vertex vIi (t) has initial direction

vB1 − vI1(0). For the sake of contradiction, suppose that this vertex does not move in a

straight-line motion as a function of t and let t0 denote the first time value for which vIi (t)

does not point in the direction vB1 − vI1(0). However, this contradicts the fact that vIi (t) has

direction vB1 − vI1(t0) at t = t0.
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CHAPTER V

STAR-SHAPED POLYGONS

In this Chapter, we briefly discuss a possible approach toward showing that X(Ω, T )

is contractible, where (Ω, T ) is a triangulated strictly star-shaped polygon with one reflex

vertex vBNB
= vr = (xr, yr) ∈ R2 and T does not contain any dividing edges.

5.1 The Weight Space

The primary reason why we avoid directly manipulating the coordinates of the interior

vertices of elements in X(Ω, T ) is that it is difficult to systematically perturb them while

avoiding collisions with edges or other vertices – moreso if NI is very large. Instead, we wish

to work with the weight space W (Ω̃, T̃ ) of a triangulated convex polygon (Ω̃, T̃ ) which is

related to (Ω, T ) in the manner depicted below, the two upsides being thatW (Ω̃, T̃ ) is convex

and, if we deform a τ = Ψ(w) ∈ X(Ω̃, T̃ ), for some weight w ∈ W (Ω̃, T̃ ), by varying the edge

weight of a certain interior-to-boundary edge in w in the manner constructed in Chapter IV,

then we can continuously map τ to a similar τ ′ ∈ X(Ω̃, T̃ ) without any degeneracies.

5.2 Convex Hull of a Star-Shaped Polygon

To that end, we define (Ω̃, T̃ ) as follows:

• Let Ω̃ be the convex polygon obtained by taking the convex hull of Ω – that is, we form

a boundary edge connecting the only two boundary vertices vBNB−1 and vBNB−2 adjacent

to vr;

• Because vr is in the interior of Ω̃, form the triangulation T̃ of Ω̃ by now treating vr as
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an interior vertex of T , which we denote by ṽr = vINI+1, and the two boundary edges

eBB
NB−1,NB

, eBB
NB−2,NB

of (Ω, T ) as now interior-to-boundary edges of T , which is denoted

by eIBNI+1,NB−1 and eIBNI+1,NB−2, respectively.

This yields the following relation:

Lemma 5.2.1 There exists an embedding X(Ω, T ) ↪→ X(Ω̃, T̃ ).

Proof. This is given by (vI1 , v
I
2 , . . . , v

I
NI
) 7−→ (vI1 , v

I
2 , . . . , v

I
NI
, vr).

Note that the ambient space X(Ω̃, T̃ ) is contractible by Corollary 1.3.1. As such, we

conjecture that

Conjecture 5.2.1 There is a deformation retract

D : X(Ω̃, T̃ )× I → X(Ω̃, T̃ )

from X(Ω̃, T̃ ) to X(Ω, T ).
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